A note on cubic convolution interpolation
نویسندگان
چکیده
منابع مشابه
A note on cubic convolution interpolation
We establish a link between classical osculatory interpolation and modern convolution-based interpolation and use it to show that two well-known cubic convolution schemes are formally equivalent to two osculatory interpolation schemes proposed in the actuarial literature about a century ago. We also discuss computational differences and give examples of other cubic interpolation schemes not pre...
متن کاملA note on cubic polynomial interpolation
“The NURBS Book” [L. Piegl, W. Tiller, The NURBS Book, second edn, Springer, 1997] is very popular in the fields of computer aided geometric design (CAGD) and geometric modeling. In Section 9.5.2 of the book, the well-known problem of the local cubic spline approximation is discussed. The key in local cubic spline approximation is cubic polynomial interpolation. In this short paper, we present ...
متن کاملCubic Convolution Interpolation for Digital Image Processing
Absfrucf-Cubic convolution interpolation is a new technique for resampling discrete data. It has a number of desirable features which make it useful for image processing. The technique can be performed efficiently on a digital computer. The cubic convolution interpolation function converges uniformly to the function being interpolated as the sampling increment approaches zero, With the appropri...
متن کاملImage data compression using cubic convolution spline interpolation
A new cubic convolution spline interpolation (CCSI )for both one-dimensional (1-D) and two-dimensional (2-D) signals is developed in order to subsample signal and image compression data. The CCSI yields a very accurate algorithm for smoothing. It is also shown that this new and fast smoothing filter for CCSI can be used with the JPEG standard to design an improved JPEG encoder-decoder for a hig...
متن کاملConstrained Interpolation via Cubic Hermite Splines
Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation. It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Image Processing
سال: 2003
ISSN: 1057-7149
DOI: 10.1109/tip.2003.811493